Robots to the rescue – Tech News

Rapid advances in technology are revolutionizing the roles of aerial, terrestrial and maritime robotic systems in disaster relief, search and rescue (SAR) and salvage operations. Robots and drones can be deployed quickly in areas deemed too unsafe for humans and are used to guide rescuers, collect data, deliver essential supplies or provide communication services.

Sea rescue robot EMILY Emily – short for Emergency Integrated Lifesaving Lanyard – is a remote-controlled rescue boat used by lifeguards to save people’s life at sea (Photo: Hydrolanix – EMILY robot)

Well-established use

The first reported use of SAR robots was to explore the wreckage beneath the collapsed twin towers of the World Trade Center in New York after the September 2001 terrorist attacks. Drones and robots have been used to survey damage after disasters such as the Fukushima Daiichi nuclear power plant accident in Japan in 2011 and the earthquakes in Haiti (2010) and Nepal (2015). Up to now, more than 50 deployments of disaster robots have been documented throughout the world, according to the Texas-based Center for Robot‑Assisted Search & Rescue (CRASAR).

 

Robin Murphy, head of CRASAR and author of the book Disaster Robotics, says “the impact of earthquakes, hurricanes, flooding […] is increasing, so the need for robots for all phases of a disaster, from prevention to response and recovery, will increase as well”.

Eyes in the sky

Drones, also known as unmanned aerial vehicles (UAVs), can be used to detect and enter damaged buildings, assisting rescue robots and responders on the ground by speeding up the search for survivors through prioritizing which areas to search first. The more quickly SAR teams respond, the higher the survival rate is likely to be. Rescue drones create real-time maps by taking aerial surveys and send back photos, videos and sensor data to support damage assessments.

Drones used for SAR and disaster relief are most commonly powered by rechargeable batteries and are operated autonomously through onboard computers or by remote control. Their equipment typically comprises radar and laser scanners, multiple sensors and video and optical cameras as well as infrared cameras that are used to identify heat signatures of human bodies and other objects. This helps rescuers to locate survivors at night and in large, open environments and to identify hot spots from fires. Listening devices can pick up hard-to-hear audio, while Wi-Fi antennas and other attachments detect signals given off by mobile phones and plot a map that outlines the locations of victims.

New technologies in use or development for rescue drones and robots include ways of increasing survivor detection. Sensors scan areas for heartbeats and breathing, multisensor probes respond to odours or sounds and chemical sensors signal the presence of gases.

Standards put safety first

Much of the technology used in drones comes from commodity electronics developed for consumer essentials like mobile phones. Drones also require global positioning satellite (GPS) units, wireless transmitters, signal processors and microelectromechanical systems (MEMS). The flight controller also collects data from barometric pressure and airspeed sensors.

IEC International Standards produced by a range of IEC Technical Committees (TCs) and Subcommittees (SCs) cover the components of drones such as batteries, MEMS and other sensors, with an emphasis on safety and interoperability.

IEC TC 47: Semiconductor devices, and its SC 47F: Micro electromechanical systems, are responsible for compiling a wide range of International Standards for the semiconductor devices used in sensors and the MEMS essential to the safe operation of drone flights. These include accelerometers, altimeters, magnetometers (compasses), gyroscopes and pressure sensors. IEC TC 56: Dependability, covers the reliability of electronic components and equipment.

IEC TC 2: Rotating machinery, prepares International Standards covering specifications for rotating electrical machines, while IEC TC 91: Electronics assembly technology, is responsible for standards on electronic assembly technologies including components.

IEC SC 21A: Secondary cells and batteries containing alkaline or other non-acid electrolytes, compiles International Standards for batteries used in mobile applications, as well as for large-capacity lithium cells and batteries.

Ideal for isolated and remote hard-to-access areas

Using drones is useful not only when natural disasters make access by air, land, sea or road difficult, but also in isolated regions that lack accessible infrastructure. Recently, drones have started delivering medical supplies in areas where finding emergency healthcare is extremely difficult. In 2014, Médecins Sans Frontières piloted the use of drones to deliver vaccines and medicine in Papua New Guinea. In 2016, the US robotics company Zipline launched a drone delivery service, in partnership with the government of Rwanda, to supply blood and medical supplies throughout the mountainous East African country. Zipline says its battery-powered drones can fly 120 km on a single charge to deliver medicine speedily, without the need for refrigeration or insulation.

A project by a company in the Netherlands to help refugees who get into difficulty in the Mediterranean Sea offers another example of drones being used for humanitarian purposes. Its search and rescue (SAR) drone is intended to fly over long distances, detect boats and drop life jackets, life buoys, food and medicine if necessary.

Currently only about a quarter of the world’s countries regulate the use of drones. Their deployment in disaster relief operations poses challenges involving regulatory issues, particularly when decisions are made on an ad hoc basis by local and national authorities. Humanitarian relief agencies also warn of the risks of relief drones being mistaken for military aircraft.

Advertisements

Comments are closed.

Create a free website or blog at WordPress.com.

Up ↑

%d bloggers like this: